Seismic imaging with Wigner distribution functions

نویسندگان

  • Paul Sava
  • Oleg Poliannikov
چکیده

The fidelity of depth seismic imaging depends on the accuracy of the velocity models used for wavefield reconstruction. Models can be decomposed in two components corresponding to large scale and small scale variations. In practice, the large scale velocity model component can be estimated with high accuracy using repeated migration/tomography cycles, but the small scale component cannot. When the Earth has significant small-scale velocity components, wavefield reconstruction does not completely describe the recorded data and migrated images are perturbed by artifacts. There are two possible ways to address this problem: improve wavefield reconstruction by estimating more accurate velocity models and image using conventional techniques (e.g. wavefield cross-correlation), or reconstruct wavefields with conventional methods using the known background velocity model, but improve the imaging condition to alleviate the artifacts caused by the imprecise reconstruction, which is what we suggest in this paper. We describe the unknown component of the velocity model as a random function with local spatial correlations. Imaging data perturbed by such random variations is characterized by statistical instability, i.e. various wavefield components image at wrong locations that depend on the actual realization of the random model. Statistical stability can be achieved by pre-processing the reconstructed wavefields prior to the imaging condition. We employ Wigner distribution functions to attenuate the random noise present in the reconstructed wavefields, parametrized as a function of image coordinates. Wavefield filtering using Wigner distribution functions and conventional imaging can be lumped-together into a new form of imaging condition which we call an “interferometric imaging condition” due to its similarity to concepts from recent work on interferometry. The interferometric imaging condition can be formulated both for zero-offset and for multi-offset data, leading to robust and efficient imaging procedures that are effective in attenuating imaging artifacts due to unknown velocity models.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Imaging effects due to multi-scale model heterogeneity

Velocity models used for wavefield-based seismic imaging represent approximations of the velocity characterizing the area under investigation. We can conceptually decompose the real velocity model into a background component which can be inferred using conventional velocity analysis techniques, and into another unknown component encapsulating the model heterogeneities. This unknown component is...

متن کامل

Pathologies cardiac discrimination using the Fast Fourir Transform (FFT) The short time Fourier transforms (STFT) and the Wigner distribution (WD)

This paper is concerned with a synthesis study of the fast Fourier transform (FFT), the short time Fourier transform (STFT and the Wigner distribution (WD) in analysing the phonocardiogram signal (PCG) or heart cardiac sounds.     The FFT (Fast Fourier Transform) can provide a basic understanding of the frequency contents of the heart sounds. The STFT is obtained by calculating the Fourier tran...

متن کامل

Optimizing design of 3D seismic acquisition by CRS trace interpolation

Land seismic data acquisition in most of cases suffers from obstacles in fields which deviates geometry of the real acquired data from what was designed. These obstacles will cause gaps, narrow azimuth and offset limitation in the data. These shortcomings, not only prevents regular trace distribution in bins, but also distorts the subsurface image by reducing illumination of the target formatio...

متن کامل

Wigner-radon Representations for 3-d Seismic Data Analysis

In this paper a local Radon representation is proposed and applied to 3-D seismic data analysis. The derivation of the local Radon power spectrum is based on an extension of the relation between the global Radon transform and multi-dimensional Fourier transform to the non-stationary case. This Wigner-Radon power spectrum is closely related to the Cohen’s class of quadratic timefrequency represe...

متن کامل

Optical sectioning for optical scanning holography using phase-space filtering with Wigner distribution functions.

We propose a novel optical sectioning method for optical scanning holography, which is performed in phase space by using Wigner distribution functions together with the fractional Fourier transform. The principle of phase-space optical sectioning for one-dimensional signals, such as slit objects, and two-dimensional signals, such as rectangular objects, is first discussed. Computer simulation r...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008